1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
package main
import (
"fmt"
"io"
"strings"
)
// 1. 函数式接口
type Handler func(string) string
func (h Handler) Handle(input string) string {
return h(input)
}
// 2. 接口组合
type Closer interface {
Close() error
}
type ReadCloser interface {
io.Reader
Closer
}
type WriteCloser interface {
io.Writer
Closer
}
type ReadWriteCloser interface {
io.Reader
io.Writer
Closer
}
// 3. 实现多个接口的类型
type MyFile struct {
name string
data []byte
pos int
closed bool
}
func (f *MyFile) Read(p []byte) (n int, err error) {
if f.closed {
return 0, fmt.Errorf("file is closed")
}
if f.pos >= len(f.data) {
return 0, io.EOF
}
n = copy(p, f.data[f.pos:])
f.pos += n
return n, nil
}
func (f *MyFile) Write(p []byte) (n int, err error) {
if f.closed {
return 0, fmt.Errorf("file is closed")
}
f.data = append(f.data, p...)
return len(p), nil
}
func (f *MyFile) Close() error {
if f.closed {
return fmt.Errorf("file already closed")
}
f.closed = true
fmt.Printf("文件 %s 已关闭\n", f.name)
return nil
}
func (f *MyFile) String() string {
status := "open"
if f.closed {
status = "closed"
}
return fmt.Sprintf("MyFile{name: %s, status: %s, data: %s}",
f.name, status, string(f.data))
}
// 4. 接口适配器模式
type LegacyPrinter struct{}
func (lp *LegacyPrinter) OldPrint(text string) {
fmt.Printf("[Legacy] %s\n", text)
}
type Printer interface {
Print(string)
}
type PrinterAdapter struct {
legacy *LegacyPrinter
}
func (pa *PrinterAdapter) Print(text string) {
pa.legacy.OldPrint(text)
}
// 5. 策略模式
type SortStrategy interface {
Sort([]int) []int
}
type BubbleSort struct{}
func (bs BubbleSort) Sort(data []int) []int {
result := make([]int, len(data))
copy(result, data)
n := len(result)
for i := 0; i < n-1; i++ {
for j := 0; j < n-i-1; j++ {
if result[j] > result[j+1] {
result[j], result[j+1] = result[j+1], result[j]
}
}
}
return result
}
type QuickSort struct{}
func (qs QuickSort) Sort(data []int) []int {
result := make([]int, len(data))
copy(result, data)
quickSort(result, 0, len(result)-1)
return result
}
func quickSort(arr []int, low, high int) {
if low < high {
pi := partition(arr, low, high)
quickSort(arr, low, pi-1)
quickSort(arr, pi+1, high)
}
}
func partition(arr []int, low, high int) int {
pivot := arr[high]
i := low - 1
for j := low; j < high; j++ {
if arr[j] < pivot {
i++
arr[i], arr[j] = arr[j], arr[i]
}
}
arr[i+1], arr[high] = arr[high], arr[i+1]
return i + 1
}
type Sorter struct {
strategy SortStrategy
}
func (s *Sorter) SetStrategy(strategy SortStrategy) {
s.strategy = strategy
}
func (s *Sorter) Sort(data []int) []int {
return s.strategy.Sort(data)
}
func main() {
// 1. 函数式接口
fmt.Println("1. 函数式接口:")
upperHandler := Handler(func(s string) string {
return strings.ToUpper(s)
})
lowerHandler := Handler(func(s string) string {
return strings.ToLower(s)
})
fmt.Printf("Upper: %s\n", upperHandler.Handle("hello"))
fmt.Printf("Lower: %s\n", lowerHandler.Handle("WORLD"))
// 2. 接口组合使用
fmt.Println("\n2. 接口组合:")
file := &MyFile{name: "test.txt"}
// 作为Writer使用
var writer io.Writer = file
writer.Write([]byte("Hello, "))
writer.Write([]byte("World!"))
// 作为Reader使用
var reader io.Reader = file
buffer := make([]byte, 20)
n, err := reader.Read(buffer)
if err != nil && err != io.EOF {
fmt.Printf("读取错误: %v\n", err)
} else {
fmt.Printf("读取内容: %s\n", string(buffer[:n]))
}
// 作为ReadWriteCloser使用
var rwc ReadWriteCloser = file
rwc.Write([]byte(" More data"))
rwc.Close()
// 3. 适配器模式
fmt.Println("\n3. 适配器模式:")
legacy := &LegacyPrinter{}
adapter := &PrinterAdapter{legacy: legacy}
var printer Printer = adapter
printer.Print("使用适配器模式打印")
// 4. 策略模式
fmt.Println("\n4. 策略模式:")
data := []int{64, 34, 25, 12, 22, 11, 90}
fmt.Printf("原始数据: %v\n", data)
sorter := &Sorter{}
// 使用冒泡排序
sorter.SetStrategy(BubbleSort{})
bubbleSorted := sorter.Sort(data)
fmt.Printf("冒泡排序: %v\n", bubbleSorted)
// 使用快速排序
sorter.SetStrategy(QuickSort{})
quickSorted := sorter.Sort(data)
fmt.Printf("快速排序: %v\n", quickSorted)
// 5. 接口的动态性
fmt.Println("\n5. 接口的动态性:")
var shape interface{} = Circle{Radius: 5}
// 动态检查和调用方法
if s, ok := shape.(interface{ Area() float64 }); ok {
fmt.Printf("面积: %.2f\n", s.Area())
}
if d, ok := shape.(interface{ Draw() }); ok {
d.Draw()
}
// 6. 空接口作为通用容器
fmt.Println("\n6. 空接口作为通用容器:")
container := make([]interface{}, 0)
container = append(container, 42)
container = append(container, "hello")
container = append(container, Circle{Radius: 3})
container = append(container, true)
for i, item := range container {
fmt.Printf("Item %d: %v (type: %T)\n", i, item, item)
}
}
// Circle类型定义(从前面的例子复用)
type Circle struct {
Radius float64
}
func (c Circle) Area() float64 {
return 3.14159 * c.Radius * c.Radius
}
func (c Circle) Draw() {
fmt.Printf("绘制半径为 %.2f 的圆\n", c.Radius)
}
|