对象生命周期是指对象从创建到销毁的整个过程。理解对象生命周期对于避免内存泄漏、悬空指针和其他内存相关问题至关重要。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#include <iostream>
class Entity
{
public:
Entity() { std::cout << "Create Entity!" << std::endl; }
~Entity() { std::cout << "Destroy Entity!" << std::endl; }
};
int main()
{
{
Entity e1; // 在栈上创建的对象离开作用域后会自动销毁
std::cout << "Inside scope" << std::endl;
} // e1在这里被自动销毁
std::cout << "Outside scope" << std::endl;
Entity* e2 = new Entity(); // 堆上创建的对象不会自动销毁
// delete e2; // 需要手动删除,否则内存泄漏
}
|
输出:
Create Entity!
Inside scope
Destroy Entity!
Outside scope
Create Entity!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
class StackExample
{
private:
std::string m_Name;
public:
StackExample(const std::string& name) : m_Name(name)
{
std::cout << "Create " << m_Name << std::endl;
}
~StackExample()
{
std::cout << "Destroy " << m_Name << std::endl;
}
};
void Function()
{
StackExample obj1("Function Object");
if (true)
{
StackExample obj2("Block Object");
std::cout << "Inside if block" << std::endl;
} // obj2在这里被销毁
std::cout << "After if block" << std::endl;
} // obj1在这里被销毁
int main()
{
std::cout << "Before function call" << std::endl;
Function();
std::cout << "After function call" << std::endl;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
class HeapExample
{
private:
std::string m_Name;
public:
HeapExample(const std::string& name) : m_Name(name)
{
std::cout << "Create " << m_Name << std::endl;
}
~HeapExample()
{
std::cout << "Destroy " << m_Name << std::endl;
}
const std::string& GetName() const { return m_Name; }
};
int main()
{
HeapExample* obj1 = new HeapExample("Heap Object 1");
HeapExample* obj2 = new HeapExample("Heap Object 2");
std::cout << "Objects created" << std::endl;
delete obj1; // 手动销毁obj1
std::cout << "obj1 deleted" << std::endl;
// obj2没有被删除,会造成内存泄漏
return 0;
} // 程序结束,obj2仍然没有被销毁
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
// 实现一个简单的智能指针,可以自动释放
class AutoDeletePtr
{
private:
Entity* m_EntityPtr;
public:
AutoDeletePtr(Entity* entity) : m_EntityPtr(entity) {}
~AutoDeletePtr()
{
delete m_EntityPtr;
std::cout << "AutoDeletePtr destroyed, entity deleted" << std::endl;
}
Entity* Get() const { return m_EntityPtr; }
Entity* operator->() const { return m_EntityPtr; }
Entity& operator*() const { return *m_EntityPtr; }
};
int main()
{
{
AutoDeletePtr ptr(new Entity());
std::cout << "Using smart pointer" << std::endl;
} // ptr离开作用域,自动删除Entity
std::cout << "Smart pointer scope ended" << std::endl;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
#include <memory>
class ManagedEntity
{
private:
std::string m_Name;
public:
ManagedEntity(const std::string& name) : m_Name(name)
{
std::cout << "Create " << m_Name << std::endl;
}
~ManagedEntity()
{
std::cout << "Destroy " << m_Name << std::endl;
}
void DoSomething() const
{
std::cout << m_Name << " is doing something" << std::endl;
}
};
int main()
{
{
// unique_ptr自动管理内存
std::unique_ptr<ManagedEntity> ptr1 = std::make_unique<ManagedEntity>("Unique Entity");
ptr1->DoSomething();
// shared_ptr允许共享所有权
std::shared_ptr<ManagedEntity> ptr2 = std::make_shared<ManagedEntity>("Shared Entity");
{
std::shared_ptr<ManagedEntity> ptr3 = ptr2; // 共享所有权
ptr3->DoSomething();
std::cout << "Reference count: " << ptr2.use_count() << std::endl;
} // ptr3销毁,但对象仍然存在
std::cout << "Reference count: " << ptr2.use_count() << std::endl;
ptr2->DoSomething();
} // 所有智能指针销毁,对象自动删除
std::cout << "All smart pointers destroyed" << std::endl;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#include <vector>
class ContainerElement
{
private:
int m_Value;
public:
ContainerElement(int value) : m_Value(value)
{
std::cout << "Create element " << m_Value << std::endl;
}
ContainerElement(const ContainerElement& other) : m_Value(other.m_Value)
{
std::cout << "Copy element " << m_Value << std::endl;
}
ContainerElement(ContainerElement&& other) noexcept : m_Value(other.m_Value)
{
std::cout << "Move element " << m_Value << std::endl;
}
~ContainerElement()
{
std::cout << "Destroy element " << m_Value << std::endl;
}
int GetValue() const { return m_Value; }
};
int main()
{
{
std::vector<ContainerElement> vec;
std::cout << "--- Adding elements ---" << std::endl;
vec.emplace_back(1); // 直接在容器中构造
vec.emplace_back(2);
vec.emplace_back(3);
std::cout << "--- Vector operations ---" << std::endl;
ContainerElement elem(4);
vec.push_back(elem); // 拷贝构造
vec.push_back(ContainerElement(5)); // 移动构造
std::cout << "--- Vector size: " << vec.size() << " ---" << std::endl;
} // vector销毁,所有元素自动销毁
std::cout << "Vector destroyed" << std::endl;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
class Component
{
private:
std::string m_Name;
public:
Component(const std::string& name) : m_Name(name)
{
std::cout << "Create component: " << m_Name << std::endl;
}
~Component()
{
std::cout << "Destroy component: " << m_Name << std::endl;
}
};
class CompositeObject
{
private:
Component m_Component1; // 成员对象
Component m_Component2;
Component* m_Component3; // 指针成员
public:
CompositeObject()
: m_Component1("Component1"), m_Component2("Component2")
{
m_Component3 = new Component("Component3");
std::cout << "Create CompositeObject" << std::endl;
}
~CompositeObject()
{
delete m_Component3; // 手动删除指针成员
std::cout << "Destroy CompositeObject" << std::endl;
}
// 注意:成员对象的析构顺序与声明顺序相反
};
int main()
{
{
CompositeObject obj;
std::cout << "CompositeObject created" << std::endl;
} // obj销毁,成员对象按相反顺序销毁
std::cout << "CompositeObject destroyed" << std::endl;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
class StaticExample
{
private:
std::string m_Name;
public:
StaticExample(const std::string& name) : m_Name(name)
{
std::cout << "Create static: " << m_Name << std::endl;
}
~StaticExample()
{
std::cout << "Destroy static: " << m_Name << std::endl;
}
};
StaticExample g_GlobalObject("Global"); // 全局对象
void Function()
{
static StaticExample s_LocalStatic("Local Static"); // 局部静态对象
std::cout << "Function called" << std::endl;
}
int main()
{
std::cout << "Main started" << std::endl;
Function();
Function(); // 局部静态对象只创建一次
std::cout << "Main ending" << std::endl;
return 0;
} // 程序结束时,静态对象按创建顺序的相反顺序销毁
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
class Resource
{
private:
std::string m_Name;
public:
Resource(const std::string& name) : m_Name(name)
{
std::cout << "Acquire resource: " << m_Name << std::endl;
}
~Resource()
{
std::cout << "Release resource: " << m_Name << std::endl;
}
};
class RAIIExample
{
private:
Resource m_Resource;
public:
RAIIExample(const std::string& name) : m_Resource(name) {}
void DoWork()
{
std::cout << "Doing work..." << std::endl;
// 如果这里抛出异常,析构函数仍会被调用
// throw std::runtime_error("Something went wrong");
}
};
int main()
{
try
{
RAIIExample example("Important Resource");
example.DoWork();
}
catch (const std::exception& e)
{
std::cout << "Exception caught: " << e.what() << std::endl;
}
// 即使发生异常,Resource也会被正确释放
std::cout << "Program continues" << std::endl;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
void GoodPractice()
{
// 好的做法:使用栈对象
Entity entity;
entity.DoSomething();
// 自动销毁,无需担心内存管理
}
void BadPractice()
{
// 不好的做法:不必要的堆分配
Entity* entity = new Entity();
entity->DoSomething();
delete entity; // 容易忘记
}
|
1
2
3
4
5
6
7
|
void ModernPractice()
{
// 现代C++做法:使用智能指针
auto entity = std::make_unique<Entity>();
entity->DoSomething();
// 自动管理内存
}
|
- 栈对象:离开作用域时自动销毁,是最安全的内存管理方式
- 堆对象:不会自动销毁,需要手动delete,容易导致内存泄漏
- RAII原则:资源获取即初始化,利用对象生命周期自动管理资源
- 智能指针:现代C++推荐使用智能指针自动管理动态内存
- 成员对象:按声明顺序构造,按相反顺序析构